Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.853
Filtrar
1.
Exp Dermatol ; 33(4): e15065, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563644

RESUMO

The advanced glycation end-products (AGEs) are produced through non-enzymatic glycation between reducing sugars and free amino groups, such as proteins, lipids or nucleic acids. AGEs can enter the body through daily dietary intake and can also be generated internally via normal metabolism and external stimuli. AGEs bind to cell surface receptors for AGEs, triggering oxidative stress and inflammation responses that lead to skin ageing and various diseases. Evidence shows that AGEs contribute to skin dysfunction and ageing. This review introduces the basic information, the sources, the metabolism and absorption of AGEs. We also summarise the detrimental mechanisms of AGEs to skin ageing and other chronic diseases. For the potential strategies for counteracting AGEs to skin and other organs, we summarised the pathways that could be utilised to resist glycation. Chemical and natural-derived anti-glycation approaches are overviewed. This work offers an understanding of AGEs to skin ageing and other chronic diseases and may provide perspectives for the development of anti-glycation strategies.


Assuntos
Reação de Maillard , Pele , Humanos , Estresse Oxidativo , Doença Crônica
2.
J Drugs Dermatol ; 23(4): SF378083s5-SF378083s10, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564405

RESUMO

Skin aging is influenced by various exogenous and endogenous factors, ranging from ultraviolet (UV) light exposure and environmental toxins to biological sources, such as those that arise from normal metabolic processes (eg, free radicals). Glycation is the normal process by which glucose and other reducing sugars react with proteins to form an array of heterogeneous biomolecular structures known as advanced glycation end-products (AGEs) over time. However, AGEs are toxic to human cells and are implicated in the acceleration of inflammatory and oxidative processes, with their accumulation in the skin being associated with increased skin dulling and yellowing, fine lines, wrinkles, and skin laxity. Clinicians should become cognizant of how AGEs develop, what their biological consequences are, and familiarize themselves with available strategies to mitigate their formation. J Drugs Dermatol.  2024;23:4(Suppl 1):s5-10.


Assuntos
Produtos Finais de Glicação Avançada , Reação de Maillard , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/toxicidade , Açúcares/efeitos adversos , Açúcares/metabolismo , Pele/metabolismo , Radicais Livres/metabolismo
3.
Endocr Regul ; 58(1): 57-67, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38563294

RESUMO

Advanced glycation end products (AGEs) are a diverse group of compounds that are formed as a result of the non-enzymatic reaction between a reducing sugar such as glucose and the free NH2 groups of an amino acid in a protein or other biomolecule. The chemical reaction, by which these products are generated, is known as the Maillard reaction and occurs as a part of the body's normal metabolism. Such a reaction is enhanced during diabetes due to hyperglycemia, but it can also occur during the preparation, processing, and preservation of certain foods. Therefore, AGEs can also be obtained from the diet (d-AGE) and contribute to an increase of the total serum pool of these compounds. They have been implicated in a wide variety of pathological processes, mainly because of their ability to induce inflammatory responses and oxidative stress increase. They are extensively accumulated as a part of the normal aging, especially in tissues rich in long half-life proteins, which can compromise the physiology of these tissues. d-AGEs are abundant in diets rich in processed fats and sugars. This review is addressed to the current knowledge on these products and their impact on the immunomodulation of various mechanisms that may contribute to exacerbation of the diabetes pathophysiology.


Assuntos
Diabetes Mellitus , Produtos Finais de Glicação Avançada , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Dieta/efeitos adversos , Reação de Maillard , Inflamação
4.
Elife ; 122024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598270

RESUMO

Type 2 diabetes (T2D) is associated with higher fracture risk, despite normal or high bone mineral density. We reported that bone formation genes (SOST and RUNX2) and advanced glycation end-products (AGEs) were impaired in T2D. We investigated Wnt signaling regulation and its association with AGEs accumulation and bone strength in T2D from bone tissue of 15 T2D and 21 non-diabetic postmenopausal women undergoing hip arthroplasty. Bone histomorphometry revealed a trend of low mineralized volume in T2D (T2D 0.249% [0.156-0.366]) vs non-diabetic subjects 0.352% [0.269-0.454]; p=0.053, as well as reduced bone strength (T2D 21.60 MPa [13.46-30.10] vs non-diabetic subjects 76.24 MPa [26.81-132.9]; p=0.002). We also showed that gene expression of Wnt agonists LEF-1 (p=0.0136) and WNT10B (p=0.0302) were lower in T2D. Conversely, gene expression of WNT5A (p=0.0232), SOST (p<0.0001), and GSK3B (p=0.0456) were higher, while collagen (COL1A1) was lower in T2D (p=0.0482). AGEs content was associated with SOST and WNT5A (r=0.9231, p<0.0001; r=0.6751, p=0.0322), but inversely correlated with LEF-1 and COL1A1 (r=-0.7500, p=0.0255; r=-0.9762, p=0.0004). SOST was associated with glycemic control and disease duration (r=0.4846, p=0.0043; r=0.7107, p=0.00174), whereas WNT5A and GSK3B were only correlated with glycemic control (r=0.5589, p=0.0037; r=0.4901, p=0.0051). Finally, Young's modulus was negatively correlated with SOST (r=-0.5675, p=0.0011), AXIN2 (r=-0.5523, p=0.0042), and SFRP5 (r=-0.4442, p=0.0437), while positively correlated with LEF-1 (r=0.4116, p=0.0295) and WNT10B (r=0.6697, p=0.0001). These findings suggest that Wnt signaling and AGEs could be the main determinants of bone fragility in T2D.


Type 2 diabetes is a long-term metabolic disease characterised by chronic high blood sugar levels. This in turn has a negative impact on the health of other tissues and organs, including bones. Type 2 diabetes patients have an increased risk of fracturing bones compared to non-diabetics. This is particularly true for fragility fractures, which are fractures caused by falls from a short height (i.e., standing height or less), often affecting hips or wrists. Usually, a lower bone density is associated with higher risk of fractures. However, patients with type 2 diabetes have increased bone fragility despite normal or higher bone density. One reason for this could be the chronically high levels of blood sugar in type 2 diabetes, which alter the properties of proteins in the body. It has been shown that the excess sugar molecules effectively 'react' with many different proteins, producing harmful compounds in the process, called Advanced Glycation End-products, or AGEs. AGEs are ­ in turn ­thought to affect the structure of collagen proteins, which help hold our tissues together and decrease bone strength. However, the signalling pathways underlying this process are still unclear. To find out more, Leanza et al. studied a signalling molecule, called sclerostin, which inhibits a signalling pathway that regulates bone formation, known as Wnt signaling. The researchers compared bone samples from both diabetic and non-diabetic patients, who had undergone hip replacement surgery. Analyses of the samples, using a technique called real-time-PCR, revealed that gene expression of sclerostin was increased in samples of type 2 diabetes patients, which led to a downregulation of Wnt signaling related genes. Moreover, the downregulation of Wnt genes was correlated with lower bone strength (which was measured by compressing the bone tissue). Further biochemical analysis of the samples revealed that higher sclerostin activity was also associated with higher levels of AGEs. These results provide a clearer understanding of the biological mechanisms behind compromised bone strength in diabetes. In the future, Leanza et al. hope that this knowledge will help us develop treatments to reduce the risk of bone complications for type 2 diabetes patients.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Feminino , Reação de Maillard , Via de Sinalização Wnt , Osso e Ossos , Pesquisadores
5.
J Agric Food Chem ; 72(12): 6593-6600, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38502529

RESUMO

Furpenthiazinate is a yellow pigment formed by the Maillard reaction between cysteine and furfural under strongly acidic conditions. Here, we describe the conditions and mechanism of pigment formation in a model system and in an acid hydrolyzate of food and analyze its biological properties. A reaction solution containing 32 mM cysteine and 128 mM furfural or 64 mM cysteine and 256 mM furfural in the presence of 2-6 M hydrochloric acid that was heated to 110 °C for 1-2 h yielded approximately 3 mM furpenthiazinate. Nuclear magnetic resonance analysis of furpenthiazinate prepared using 1-13C or 5-13C d-ribose suggests that it was formed through the condensation of cysteine and two C5 chains derived from pentose with the dehydration and elimination of formic acid. Furpenthiazinate was detected in mieki, a seasoning, and some acid hydrolyzates of food, and it did not show antibacterial or mutagenic activity.


Assuntos
Furaldeído , Reação de Maillard , Tiazinas , Cisteína , Furanos , Ácidos
6.
Food Chem ; 446: 138876, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432134

RESUMO

Glycation is an effective strategy for the application of myofibrillar protein (MP) in beverage formulas by improving water solubility. In conventional glycation, the efficiency was limited as MP-saccharides conjugates mostly produced at low temperature due to thermosensitivity. This study was aimed to explore unfolding/aggregation kinetics of MP, including aggregate behavior, structural characteristics, and micromorphology, which guided the selection of temperature for glycation. It was shown that 40 °C/47.5 °C were critical temperature for MP unfolding/aggregation, respectively. Accordingly, an innovative technology of glycation (cyclic continuous glycation, CCG) was established by combining such temperatures. The results confirmed that cyclic continuous heating (CCH) inhibited excessive exposure of sulfhydryl and hydrophobic groups impeding protein aggregation. Importantly, it was revealed that rational designed CCG promoted covalent binding of MP to glucose by regulating unfolding-aggregation balance, exhibiting higher glycation degree. Overall, CCG-modified MP is expected to motivate the application of meat proteins in food formulations.


Assuntos
Reação de Maillard , Proteínas Musculares , Proteínas Musculares/química
7.
J Agric Food Chem ; 72(13): 7344-7353, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502793

RESUMO

Amadori rearrangement products of asparagine with glucose (Asn-Glc-ARP) were first prepared through Maillard model reactions and identified via liquid chromatography-mass spectroscopy. With the study on the effect of the reaction temperature, pH values, and reaction time, the ideal reaction condition for accumulation of Asn-Glc-ARP was determined at 100 °C for 40 min under pH 7. Asparagine (Asn) was prone to degrade from Asn-Glc-ARP in alkaline pH values within a lower temperature range, while in an acidic environment with high temperatures, deamidation of Asn-Glc-ARP to Asp-Glc-ARP (Amadori rearrangement products of aspartic acid with glucose) was displayed as the dominant pathway. The deamidation reaction on the side chain of the amide group took place at Asn-Glc-ARP and transferred it into the hydroxyl group, forming Asp-Glc-ARP at the end. Considering that lyophilization as pretreatment led to limited water activity, a single aspartic acid was not deamidated from Asn directly nor did it degrade from Asp-Glc-ARP even at 120 °C. The degradation of Asn-Glc-ARP through tandem mass spectrometry (MS/MS) analysis showed the obvious fragment ion at m/z 211, indicating that the stable oxonium ion formed during fragmentation. The structure of Asn-Glc-ARP was proposed as 1-deoxy-1-l-asparagino-d-fructose after separation and purification. Also, the content of Asn-Glc-ARP within dry jujube fruit (HeTianYuZao) was quantitated as high as 8.1 ± 0.5 mg/g.


Assuntos
Asparagina , Glucose , Extratos Vegetais , Ziziphus , Asparagina/química , Glucose/química , Espectrometria de Massas em Tandem , Reação de Maillard , Ácido Aspártico
8.
J Agric Food Chem ; 72(13): 7203-7218, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38518258

RESUMO

Diabetes complications are associated with aldose reductase (AR) and advanced glycation end products (AGEs). Using bioassay-guided isolation by column chromatography, 10 flavonoids and one coumarin were isolated from Poncirus trifoliata Rafin and tested in vitro for an inhibitory effect against human recombinant AR (HRAR) and rat lens AR (RLAR). Prunin, narirutin, and naringin inhibited RLAR (IC50 0.48-2.84 µM) and HRAR (IC50 0.68-4.88 µM). Docking simulations predicted negative binding energies and interactions with the RLAR and HRAR binding pocket residues. Prunin (0.1 and 12.5 µM) prevented the formation of fluorescent AGEs and nonfluorescent Nε-(carboxymethyl) lysine (CML), as well as the fructose-glucose-mediated protein glycation and oxidation of human serum albumin (HSA). Prunin suppressed the formation of the ß-cross-amyloid structure of HSA. These results indicate that prunin inhibits oxidation-dependent protein damage, AGE formation, and AR, which may help prevent diabetes complications.


Assuntos
Complicações do Diabetes , Cristalino , Florizina/análogos & derivados , Poncirus , Ratos , Humanos , Animais , Glucose/farmacologia , Poncirus/metabolismo , Reação de Maillard , Produtos Finais de Glicação Avançada/metabolismo , Albumina Sérica Humana , Aldeído Redutase/metabolismo , Frutose
9.
Int J Biol Macromol ; 264(Pt 1): 130478, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428781

RESUMO

In hyperglycemia, accelerated glycation and oxidative stress give rise to many diabetic complications, such as diabetic cardiomyopathy (DCM). Glycated human serum albumin (GHSA) has disturbed structural integrity and hampered functional capabilities. When GHSA accumulates around cardiac cells, Nrf-2 is dysregulated, aiding oxidative stress. L-Arginine (L-Arg) is prescribed to patients with diabetes and cardiovascular diseases. This research contributes to the mechanistic insights on antiglycation and antioxidant potential of L-Arg in alleviating DCM. HSA was glycated with methylglyoxal in the presence of L-Arg (20-640 mM). Structural and functional modifications of HSA were studied. L-Arg and HSA, GHSA interactions, and thermodynamics were determined by steady-state fluorescence. H9c2 cardiomyocytes were given treatments of GHSA-L-Arg along with the inhibitor of the receptor of AGEs. Cellular antioxidant levels, detoxification enzyme activities were measured. Gene, protein expressions, and immunofluorescence data examined the activation and nuclear translocation of Nrf-2 during glycation and oxidative stress. L-Arg protected HSA from glycation-induced structural and functional modifications. The binding affinity of L-Arg was more towards HSA (104 M-1). L-Arg, specifically at lower concentration (20 mM), upregulated Nrf-2 gene, protein expressions and facilitated its nuclear translocation by activating Nrf-2 signaling. The study concluded that L-Arg can be of therapeutic advantage in glycation-induced DCM and associated oxidative stress.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Humanos , Cardiomiopatias Diabéticas/tratamento farmacológico , Produtos Finais de Glicação Avançada/metabolismo , Reação de Maillard , Antioxidantes/farmacologia , Albumina Sérica/química , Arginina/farmacologia
10.
Int J Biol Macromol ; 264(Pt 1): 130589, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437935

RESUMO

Bio-based emulsifiers hold significant importance in various industries, particularly in food, cosmetics, pharmaceuticals and other related fields. In this study, pea protein isolate (PPI) and fucoidan (FUD) were conjugated via the Maillard reaction, which is considered safe and widely used in the preparation of food particle. The PPI-FUD conjugated particles exhibit an anisotropic non-spherical structure, thereby possessing a high detachment energy capable of preventing emulsion coalescence and Ostwald ripening. Compared to emulsions previously prepared in other studies (< 500 mM), the Pickering emulsion stabilized by PPI-FUD conjugate particles demonstrates outstanding ionic strength resistance (up to 5000 mM). Furthermore, when encapsulating curcumin, the Pickering emulsion protects the curcumin from oxidation. Additionally, the formulated emulsions demonstrated the capability to incorporate up to 60 % (v/v) oil phase, revealing remarkable performance in terms of storage stability, pH stability, and thermal stability.


Assuntos
Curcumina , Proteínas de Ervilha , Polissacarídeos , Emulsões/química , Curcumina/química , Reação de Maillard , Tamanho da Partícula
11.
Int J Biol Macromol ; 264(Pt 1): 130606, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447830

RESUMO

Chickpea protein isolate (CPI) typically exhibits limited emulsifying properties under various food processing conditions, including pH variations, different salt concentrations, and elevated temperatures, which limits its applications in the food industry. In this study, CPI-citrus pectin (CP) conjugates were prepared through the Maillard reaction to investigate the influence of various CP concentrations on the structural and emulsifying properties of CPI. With the CPI/CP ratio of 1:2, the degree of graft reached 35.54 %, indicating the successful covalent binding between CPI and CP. FT-IR and intrinsic fluorescence spectroscopy analyses revealed alterations in the secondary and tertiary structures of CPI after glycosylation modification. The solubility of CPI increased from 81.39 % to 89.59 % after glycosylation. Moreover, freshly prepared CPI emulsions showed an increase in interfacial protein adsorption (70.33 % to 92.71 %), a reduction in particle size (5.33 µm to 1.49 µm), and a decrease in zeta-potential (-34.9 mV to -52.5 mV). Simultaneously, the long-term stability of the emulsions was assessed by employing a LUMiSizer stability analyzer. Furthermore, emulsions prepared with CPI:CP 1:2 exhibited excellent stability under various environmental stressors. In conclusion, the results of this study demonstrate that the glycosylation is a valuable approach to improve the emulsifying properties of CPI.


Assuntos
Cicer , Pectinas , Reação de Maillard , Espectroscopia de Infravermelho com Transformada de Fourier , Emulsões/química , Emulsificantes/química
12.
Food Res Int ; 182: 114176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519189

RESUMO

In this work, the effects of Maillard reaction of different monosaccharide-modified fish gelatin were studied. The changes of gel properties, rheology and structure of fish gelatin before and after modification were compared and analyzed, and oil-in-woter emulsions were prepared. The results showed that the five-carbon monosaccharide had stronger modification ability than the six-carbon monosaccharide, which was mainly due to the different steric hindrance of the amino acids in the nuclear layer and the outer layer to the glycosylation reaction. With the progress of the Maillard reaction, the color of fish gelatin gradually became darker. The attachment of sugar chains inhibited the gelation process of fish gelatin, decreased the gelation rate, changed the secondary structure, increased the content of ß-turn or α-helix, increased the degree of fluorescence quenching, and enhanced the emulsifying properties and emulsion stability. This study provides useful information for the preparation of different types of monosaccharide-modified proteins and emulsions.


Assuntos
Gelatina , Monossacarídeos , Animais , Gelatina/química , Reação de Maillard , Emulsões/química , Carbono
13.
Artigo em Inglês | MEDLINE | ID: mdl-38460447

RESUMO

Human serum albumin (HSA) is known to undergo modifications by glucose during diabetes. This process produces glycated HSA that can have altered binding to some drugs. In this study, high-performance affinity microcolumns and competition studies were used to see how glycation affects the binding by two thiazolidinedione-class drugs (i.e., pioglitazone and rosiglitazone) at specific regions of HSA. These regions included Sudlow sites I and II, the tamoxifen and digitoxin sites, and a drug-binding site located in subdomain IB. At Sudlow site II, the association equilibrium constants (or binding constants) for pioglitazone and rosiglitazone with normal HSA were 1.7 × 105 M-1 and 2.0 × 105 M-1 at pH 7.4 and 37 °C, with values that changed by up to 5.7-fold for glycated HSA. Sudlow site I of normal HSA had binding constants for pioglitazone and rosiglitazone of 3.4 × 105 M-1 and 4.6 × 105 M-1, with these values changing by up to 1.5-fold for glycated HSA. Rosiglitazone was found to also bind a second region that had a positive allosteric effect on Sudlow site I for all the tested preparations of HSA (binding affinity, 1.1-3.2 × 105 M-1; coupling constant for Sudlow site I, 1.20-1.34). Both drugs had a strong positive allosteric effect on the tamoxifen site of HSA (coupling constants, 13.7-19.9 for pioglitazone and 3.7-11.5 for rosiglitazone). Rosiglitazone also had weak interactions at a site in subdomain IB, with a binding constant of 1.4 × 103 M-1 for normal HSA and a value that was altered by up to 6.8-fold with glycated HSA. Neither of the tested drugs had any significant binding at the digitoxin site. The results were used to produce affinity maps that described binding by these thiazolidinediones with HSA and the effects of glycation on these interactions during diabetes.


Assuntos
Diabetes Mellitus , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Hipoglicemiantes/química , Reação de Maillard , Rosiglitazona , Pioglitazona , Ligação Proteica , Albumina Sérica/química , Tamoxifeno , Digitoxina , Cromatografia de Afinidade/métodos , Sítios de Ligação
14.
Ann Med ; 56(1): 2330615, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38513606

RESUMO

BACKGROUND: A growing number of studies show that people with similar blood glucose levels have different levels of glycosylated haemoglobin (HbA1c), and relying only on HbA1c may lead to clinical decision-making errors. The haemoglobin glycation index (HGI) quantifies the difference in HbA1c among individuals and is strongly linked to the risk of cardiovascular disease. However, the connection between this phenomenon and the poor outcomes of patients with acute decompensated heart failure (ADHF) is currently unknown. PATIENTS AND METHODS: This retrospective, single-centre-based cohort study included 1531 hospitalized patients with ADHF from September 2010 to January 2020. The HGI is calculated from the difference between the observed and predicted HbA1c values [predicted HbA1c = 0.024 × fasting plasma glucose (FPG) (mg/dL)+3.1]. The endpoints examined in the study included all-cause death, cardiovascular (CV) death, and major adverse cardiac events (MACE). We fitted multivariable-adjusted Cox proportional hazard models to investigate the association between the HGI and clinical outcomes. RESULTS: During the five-year follow-up, 427 (27.9%) patients died from all causes, 232 (15.6%) from CV death, and 848 (55.4%) from MACE. The restricted cubic spline analysis also showed that the cumulative risk of all-cause and CV deaths decreased linearly with increasing HGI. According to multivariate Cox proportional hazard models, the highest tertile of the HGI was associated with a lower incidence of all-cause and cardiovascular deaths [all-cause death, adjusted hazard ratio (HR): 0.720, 95% confidence interval (CI): 0.563-0.921, p = 0.009; CV death, adjusted HR: 0.619, 95% CI: 0.445-0.861, p = 0.004]. A 1% increase in the HGI was associated with a 12.5% reduction in the risk of all-cause death and a 20.8% reduction in the risk of CV death. CONCLUSIONS: A high HGI was directly associated with a reduction in all-cause and CV deaths but was not associated with MACE. These findings may be helpful in the management of patients with ADHF.


Recent studies have demonstrated that significant discrepancies between HbA1c and actual blood glucose levels may lead to clinical decision-making errors.The inconsistency of previous research results suggests that the HGI may have different predictive ability in populations with different diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Humanos , Hemoglobinas Glicadas , Diabetes Mellitus Tipo 2/complicações , Estudos de Coortes , Estudos Retrospectivos , Reação de Maillard , Hemoglobinas/análise , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/complicações , Glicemia/análise
15.
Cardiovasc Diabetol ; 23(1): 113, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555454

RESUMO

BACKGROUND: The hemoglobin glycation index (HGI) is the difference between the observed and predicted values of glycosylated hemoglobin (HbA1c), which is closely associated with a variety of poor prognoses. However, there are still no studies on the correlation between HGI and poor prognosis in patients with critical coronary artery disease. The purpose of this study was to analyze the correlation between HGI and all-cause mortality in patients with critical coronary artery disease using the MIMIC-IV database. METHODS: The HGI was calculated by constructing a linear regression equation between HbA1c and fasting plasma glucose (FPG). A Kaplan‒Meier survival analysis model was constructed based on the HGI quartiles to clarify the differences in all-cause mortality rates between groups, and the log-rank test was used to assess the differences between groups. The hazard ratio (HR) of HGI as a risk factor for outcome events was assessed using the Cox proportional risk model and restricted cubic spline (RCS), with the Q2 group serving as the reference group. RESULTS: A total of 5260 patients were included in this study. The 30-day mortality rate of the patients was 4.94% and the mortality rate within 365 days was 13.12%. A low HGI was significantly associated with 30-day mortality (HR, 1.96; 95% CI, (1.38, 2.78); P < 0.001) and 365-day mortality (HR, 1.48; 95% CI, (1.19, 1.85); P < 0.001) in patients with critical coronary artery disease in the completely adjusted Cox proportional risk model. In addition, high levels of HGI were associated with 365-day mortality (HR, 1.31; 95% CI, (1.02, 1.69); P < 0.05). RCS analysis revealed a U-shaped relationship between HGI and outcome events. According to the stratified analysis, the interaction test revealed that the correlation between HGI and outcome events remained stable. CONCLUSION: There was a significant correlation between HGI and all-cause mortality in patients with critical coronary artery disease, particularly in those with low HGI. HGI can be used as a potential indicator for assessing the short- and long-term risk of mortality in such patients.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Humanos , Hemoglobinas Glicadas , Reação de Maillard , Hemoglobinas/análise , Medição de Risco , Prognóstico , Glicemia/análise
16.
J Agric Food Chem ; 72(15): 8760-8773, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38536213

RESUMO

Roasting is pivotal for enhancing the flavor of Wuyi rock tea (WRT). A study investigated a novel compound that enhances the umami taste of WRT. Metabolomics of Shuixian tea (SXT) and Rougui tea (RGT) under light roasting (LR), medium roasting (MR), and heavy roasting (HR) revealed significant differences in nonvolatiles compounds. Compared LR reducing sugars and amino acids notably decreased in MR and HR, with l-alanine declining by 69%. Taste-guided fractionation identified fraction II-B as having high umami and sweet intensities. A surprising taste enhancer, N-(1-carboxyethyl)-6-(hydroxymethyl) pyridinium-3-ol (alapyridaine), was discovered and identified. It formed via the Maillard reaction, positively correlated with roasting in SXT and RGT. Alapyridaine levels were highest in SXT among the five oolong teas. Roasting tea with glucose increased alapyridaine levels, while EGCG inhibited its formation. HR-WRT exhibited enhanced umami and sweet taste, highlighting alapyridaine's impact on WRT's flavor profile. The formation of alapyridaine during the roasting process provides new insights into the umami and sweet perception of oolong tea.


Assuntos
Alanina/análogos & derivados , Reação de Maillard , Piridinas , Paladar , Alanina/química , Chá
17.
BMC Endocr Disord ; 24(1): 31, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443880

RESUMO

INTRODUCTION: The production of advanced glycation end-products (AGEs) is a key pathomechanism related to the complications of diabetes mellitus. The measurement of HbA1c as one of the AGEs is widely used in the clinic, but also other proteins undergo glycation in the course of diabetes. Here, we measure skin AGEs (SAGEs) in patients with diabetes type 1 (DM1) and type 2 (DM2) and correlate them with metabolic markers as well as non-invasively measured liver fibrosis and steatosis. PATIENTS AND METHODS: In this cross-sectional study, a total of 64 patients with either DM1 or DM2 and 28 healthy controls were recruited. SAGEs were measured using autofluorescence (AGE Reader). Liver fibrosis and steatosis were quantified using transient elastography, which determines liver stiffness measurement (LSM) and controlled attenuation parameter (CAP). FGF19, FGF21 and GDF-15 were measured in blood samples using ELISA. RESULTS: SAGEs were elevated in both groups of patients with diabetes as compared to healthy controls (both p < 0.001) and were higher in patients with DM2 in comparison to DM1 (p = 0.006). SAGEs correlated positively with HbA1c (r = 0.404, p < 0.001), CAP (r = 0.260, p = 0.016) and LSM (r = 0.356, p < 0.001), and negatively with insulin growth factor binding protein 3 (p < 0.001). We also detected a positive correlation between GDF15 and SAGEs (r = 0.469, p < 0.001). CONCLUSIONS: SAGEs are significantly elevated in patients with both DM types 1 and 2 and correlate with metabolic markers, including HbA1c and GDF15. They might also help to detect patients with advanced liver injury in the setting of diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Fígado Gorduroso , Humanos , Controle Glicêmico , Estudos Transversais , Hemoglobinas Glicadas , Reação de Maillard , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/etiologia , Metaboloma , Biomarcadores
18.
J Agric Food Chem ; 72(11): 5878-5886, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38462902

RESUMO

The involvement of exogenous alanine was observed to inhibit the generation of 2-furfural during the thermal degradation of the Amadori rearrangement product (ARP). To clarify the reason for the reduced yield of 2-furfural triggered by exogenous alanine, the evolution of the precursors of 2-furfural formed in the ARP model and ARP-alanine model was investigated, and a model including ARP and 15N-labeled alanine was used to differentiate the role of endogenous and exogenous alanine in the degradation of ARP. It was found that the condensation between ARP and 3-deoxyxylosone could occur during thermal treatment. Nevertheless, the interaction of ARP with 3-deoxyxylosone exhibited an accelerated pace in the presence of exogenous alanine. In this way, exogenous alanine blocked the recovery of endogenous alanine while simultaneously enhancing the consumption of ARP and 3-deoxyxylosone during the Maillard reaction. Hence, the yield of 2-furfural was diminished with the interference of exogenous alanine. Furthermore, the promotion of the reaction between ARP and deoxyxylosone induced by exogenous alanine blocked their retro-aldolization reaction to short-chain α-dicarbonyls (α-DCs) and consequently resulted in a lack of pyrazine formation during the ARP degradation. The present study provided a feasible method for the controlled formation of 2-furfural during the thermal treatment of ARP derived from alanine.


Assuntos
Alanina , Furaldeído , Reação de Maillard
19.
Food Chem ; 446: 138853, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422645

RESUMO

Meat flavoring was prepared using mainly enzymatic hydrolysate of plant protein mix, VB1, cysteine, and glucose by three heating processes, including A (80 °C-140 min), B (two-stage, 80 °C-30 min/120 °C-30 min), and C (120 °C-40 min). The A-, B-, and C-heated samples exhibited the strongest fatty and weakest meaty, the strongest meaty and kokumi, and the strongest roasted and bitterness characteristics, respectively. PLS-DA for free amino acids with TAVs and that for SPME/GC-MS results with GC-O and OAVs, suggested three amino acids and eight flavor compounds contributed significantly in differentiating taste or aroma attributes of the three heated samples. Molecular weight distribution and degree of amino substitution suggested 1-5 kDa peptides contributed to kokumi taste. Overall, C- and A-heating exhibited the highest rates in Maillard reaction and lipid oxidation, respectively, while those of B heating were between these two heating processes and responsible for better flavor of meat flavoring.


Assuntos
Calefação , Paladar , Reação de Maillard , Aminoácidos , Carne/análise , Hidrolisados de Proteína , Proteínas de Plantas/química , Aromatizantes/análise , Odorantes/análise
20.
J Sci Food Agric ; 104(7): 4128-4135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308538

RESUMO

BACKGROUND: Glycation is a green processing technology. Based on our previous studies, glycation with l-arabinose and xylose was beneficial to enhance the texture properties of silver carp mince (SCM) gels. However, the possible enhancement mechanism remained unclear. Therefore, in this study, SCM gels with different types of reducing sugar (glucose, l-arabinose, and xylose) were prepared based on our previous study. The possible mechanism of texture enhancement of SCM gels was analyzed by investigating the changes in water distribution, protein structures, and microstructure in the gel system. RESULTS: The glycation of l-arabinose and xylose enhanced the hardness, cohesiveness, chewiness, and resilience of SCM gels. Hardness increased from 1883.04 (control group) to 3624.54 (l-arabinose group) and 4348.18 (xylose group). Low-field nuclear magnetic resonance (LF-NMR) showed that glycation promoted the tight binding of immobilized water to proteins. Raman spectroscopic analysis showed that glycation increased the surface hydrophobicity and promoted the formation of disulfide bonds. Scanning electron microscopy (SEM) showed that glycation promoted the formation of uniform and dense three-dimensional network structure in SCM gels. CONCLUSION: In summary, glycation enhanced the binding ability of immobilized water to proteins, improved the surface hydrophobicity, promoted the formation of disulfide bonds, and led to a more uniform and dense gel network structure of proteins, thus enhancing the texture properties of SCM gels. This research provided a theoretical basis for a better understanding of the mechanism of the effect of glycation on the quality of gel products and also provided technical support for the application of l-arabinose and xylose in new functional gel foods. © 2024 Society of Chemical Industry.


Assuntos
Carpas , Reação de Maillard , Animais , Xilose/química , Arabinose/química , Carpas/metabolismo , Géis/química , Proteínas , Água , Dissulfetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...